Беспилотные летательные аппараты производятся с конца 19 века. В
настоящее время они находят применение во всех сферах жизни общества. Устройства
изготавливаются из легких прочных материалов, которые выдерживают длительную
работу в неблагоприятных окружающих условиях.
Беспилотные технологии считаются чуть ли не чудом техники XXI века, хотя появились они не сегодня и не вчера. Однако именно в наше время самые разные модели дронов (воздушных и подводных) стали постепенно менять многие вещи в окружающем человека мире. Помимо военных беспилотниками стали активно пользоваться ученые, специалисты различных отраслей промышленности, пожарные, полиция, любители и профессионалы в области фото- и видеосъемки.
Огромное количество беспилотников создается не только для профессионалов, но и любителей. И если вы собираетесь вступить в быстро растущее сообщество коптероводов, то наверняка хотите побольше узнать о том, что представляет собой летательный аппарат, управляемый дистанционно, из каких компонентов он состоит и для чего они нужны машине.
Рассмотрим основные элементы квадрокоптера на примере модели DJI Inspire 1
Беспилотники в последнее время получают все большее распространение. Их начинают применять повсеместно: в воздухе, на воде и на суше. Ученые всего мира возлагать большие надежды на беспилотные устройства и рассчитывают, что в будущем не будет ни одной сферы, где они не будут применяться. Сегодня эти аппараты являются одним из наиболее перспективных направлений в развитии военных технологий. Их применение уже привело к существенному изменению тактики ведения боя.
Планируется, что и в гражданском секторе произойдут существенные изменения. К 2025 году глобальный рынок технологий использования беспилотников вырастет в несколько сотен раз, что приведет к вытеснению многих существующих операционных процессов. Стоимость аппаратов постепенно снижается, а с внедрением их в крупносерийное производство они станут стоить совсем немного, что приведет к их повсеместному использованию.
- Производство БПЛА
- Приемник (ресивер)
- Модуль спутниковой навигации (GPS, ГЛОНАСС, Бэйдоу).
- Полетный контроллер
- Толкающие пропеллеры
- Электронные регуляторы скорости (Electronic Speed Controllers / ESC)
- БЕСПИЛОТНЫЕ ЛЕТАТЕЛЬНЫЕ АППАРАТЫ
- КЛАССИФИКАЦИЯ БПЛА
- ПРЕИМУЩЕСТВА БПЛА
- УСТРОЙСТВО БПЛА
- ВОЗМОЖНОСТИ БПЛА
- ПРИМЕНЕНИЕ БПЛА
- Литература
- Сферы применения БПЛА
- Батарея
- Стандартные пропеллеры
- Передатчик
- Бесколлекторные двигатели
- Камера
- Виды
- Космические беспилотники. Их особенность в том, что это невероятно сложные и точные устройства, которые не терпят ошибок. На их производство выделяются огромные деньги, но в основном создаются единичные экземпляры.
Производство БПЛА
Производство БПЛА относится к наукоемким технологиям, каждая компания имеет свою технологию изготовления агрегатов.
Среди типичных этапов производства выделяют:
Беспилотные летательные аппараты подвергаются неоднократным тестированиям так как функционируют в неблагоприятных условиях. Внешние (частая смена погоды, большое количество пыли, высокая влажность) и внутренние (высокие нагрузки и трение сопряженных деталей) факторы приводят к быстрому износу узлов.
В связи с этим производители беспилотников совершенствуют методы увеличения срока службы своих изделий. Типичным способом защиты узлов и механизмов от износа является применение пластичных и жидких смазочных материалов. Они наносятся в уже собранные механизмы.
Такие смазочные составы сохраняют свои свойства достаточно непродолжительное время, к тому же стимулируют налипание пыли и другого абразива, что приводит к усиленному износу деталей.
Более эффективным решением является нанесение на сопряженные поверхности антифрикционных твердосмазочных покрытий MODENGY. Сухая текстура материалов MODENGY 1001 и MODENGY PTFE — A20 не вызывает прилипания пыли, эффективно снижает трение и износ деталей в самых сложных условиях работы.
Для крепежных изделий применяют покрытие MODENGY 1014, за счет которого стабилизируется трение в резьбе, предотвращаются задиры, заедание и коррозия, облегчается монтаж и демонтаж соединений.
Антифрикционные твердосмазочные материалы наносятся на этапе производства узлов и механизмов стандартными методами окрашивания, некоторые из них требуют нагрева для полимеризации.
Приемник (ресивер)
Приемник – это устройство, отвечающее за прием радиосигналов, посылаемых дрону через контроллер. Для эффективного управления беспилотником необходимо минимум четыре канала. Впрочем, обычно производители рекомендуют предоставлять до пяти каналов. В целом же, сегодня на рынке представлено множество разных моделей ресиверов, как и модификаций беспилотников.
https://youtube.com/watch?v=YVE4w2_YjYQ%3Ffeature%3Doembed
Обучающее видео по работе пультом дистанционного управления (контроллером) DJI
Модуль спутниковой навигации (GPS, ГЛОНАСС, Бэйдоу).
Многие современные беспилотники оснащаются модулями спутниковой навигации. Чаще всего это модуль GPS, однако на многих последних дронах от DJI можно встретить двойную систему навигации, которая может включать комбинации GPS и ГЛОНАСС или же GPS и Бэйдоу. В зависимости от установленной комбинации такой беспилотник может эффективно эксплуатироваться в тех или иных регионах мира. Примером может быть серия промышленных беспилотников DJI Matrice 200.
Модуль (или комбинация модулей) спутниковой навигации обеспечивает бортовой компьютер дрона данными о местонахождении аппарата (долгота, широта и высота). Подобная, достаточно сложная, система навигации необходима прежде всего специализированным беспилотникам, которые выполняют полеты на большие расстояния и/или выполняют достаточно сложные задачи в области безопасности, военные задачи или работают в сфере промышленности.
Модуль GPS и плата IMU для DJI Mavic 2 Pro/Zoom
Однако задачи модуля спутниковой навигации вышеописанными не ограничиваются. С его помощью летательный аппарат не только ориентируется в пространстве во время полета, но и может в автоматическом режиме точно приземлиться на “базу”, даже если его визуальные датчики и штатная камера не работают, а связь с пультом дистанционного управления утеряна. Таким образом, модуль спутниковой навигации поможет обеспечить безопасность полета.
Полетный контроллер
Полетный контроллер выполняет роль материнской платы или даже бортового компьютера беспилотника. Если несколько упростить его задачи, то полетный контроллер отвечает за передачу всех команд, которые пилот передает на борт дрона. А если точнее, то в задачи контроллера входит интерпретация входящих данных от ресивера (приемника), модуля GPS, монитора батареи и бортовых датчиков. Кроме этого, полетный контроллер взаимодействует с электронными регуляторами хода и тем самым следит за работой двигателя и регулировку скорости, что является частью задач по управлению коптером. Но это, разумеется, далеко не все. Любые команды – запуск и работа камеры, управление режимом автопилота и другие автономные функции, – все они направляются полетным контроллером. Как правило, пользователю не нужно вносить какие-либо изменения в работу устройства, поскольку это может негативно повлиять на характеристики беспилотника.
Полетный контроллер DJI A3 взаимодействует с блоком IMU и системой геопозиционирования для обеспечения высокой точности данных во время пилотирования и съемки
Толкающие пропеллеры
Толкающие пропеллеры отвечают за передвижение летательного аппарата в воздухе вперед и назад. Название пропеллеров как раз и показывает принцип их работы. Поэтому располагаются они в задней части дрона, ведь их задачей является подавление крутящих моментов двигателя дрона во время обычного полета коптера, чтобы последний двигался либо вперед, либо назад в зависимости от команд с пульта управления.
Низкошумные пропеллеры модели 8743 для квадрокоптеров серии DJI Mavic 2
С технологической точки зрения, толкающие пропеллеры не отличаются от стандартных. Их изготавливают из пластика или композитных материалов. Они также могут иметь разные размеры в зависимости от модели дрона, а также иметь специальную защиту, которая спасет конструкцию от аварии и защитит людей от случайного касания краями винтов. Толкающие пропеллеры также необходимо постоянно проверять перед полетом на предмет их общего состояния и наличия или отсутствия повреждений.
Электронные регуляторы скорости (Electronic Speed Controllers / ESC)
Электронный регулятор скорости (ESC) (другие названия: электронный регулятор скорости, электронный регулятор хода) представляет собой электрическую цепь, которая призвана контролировать скоростной режим беспилотника (впрочем, и других типов летательных аппаратов, так как это устройство в различных модификациях есть и у самолетов). По сути, это важное устройство передает энергию от батареи к двигателю бесколлекторного типа, преобразуя постоянный ток источника питания в переменный ток, который нужен мотору.
Схема работы электронного регулятора хода предполагает подачу (на входе) напряжения с батареи и поступление сигналов с полетного контроллера (бортового компьютера дрона). А вот на выходе от регулятора поступает на привод управляющее напряжение. Отсюда понятно, что регуляторы хода должны быть совместимы с полетным контроллером, когда проектируется и собирается конкретная модель беспилотника. Кроме того, они должны потреблять тока меньше, чем отдавать. Расчет же тока для привода производится, исходя из характеристик мотора и пропеллера плюс 20-30%.
О регуляторах можно рассказывать долго, а их важность для беспилотников бесспорна. Об этом говорит тот простой факт, что современные дроны полностью зависят от этого вида устройств для нормального полета и выполнения всех задач, которые ставятся перед конкретным видом летательного аппарата. Поэтому DJI и другие производители дронов на электрической тяге много работают над совершенствованием электронных регуляторов хода. При выходе каждой новой модели беспилотника DJI старается внести усовершенствования и в ESC, о чем обязательно информирует будущего потребителя, например, о снижении энергопотребления и более высокой производительности.
Специальные регуляторы скорости для гоночных дронов DJI Takyon Z14120
Где же устанавливаются электронные регуляторы ходы? Как правило, эти устройства располагают в раме летательного аппарата. У дронов DJI они, как правило, располагаются в “руках” ближе к двигателям. Многие современные модели беспилотников оснащаются достаточно продвинутыми ESC, которые могут работать в различных режимах. А это невозможно без качественного программного обеспечения (прошивки). Прошивка должна регулярно обновляться для исправления ошибок в кодах управления, а также для повышения эффективности работы устройства (снижения потребления тока и т.п.). Если вы приобретаете одну из моделей коптера бренда DJI, то вам не придется принудительно обновлять ПО, потому что при выходе новой версии прошивки, все происходит в автоматическом режиме. Поэтому вам лично не придется вносить какие-либо изменения в работу ESC.
БЕСПИЛОТНЫЕ ЛЕТАТЕЛЬНЫЕ АППАРАТЫ
многократного использования, а созданная на его основе радиоуправляемая мишень использовалась в королевском флоте Великобритании до 1943 года.
На несколько десятков лет опередили свое время исследования немецких ученых, давших миру в 1940-х годах реактивный двигатель и крылатую ракету «Фау-1» как первый применявшийся в реальных боевых действиях беспилотный летательный аппарат.
В СССР в 1930–1940 годы авиаконструктором Никитиным был разработан торпедоносец-планер типа «летающее крыло», а к началу 40-х был подготовлен проект беспилотной летающей торпеды с дальностью полета от 100 километров и выше, однако в реальные конструкции эти разработки не превратились.
После окончания Великой Отечественной войны интерес к БПЛА существенно возрос, а начиная с 1960-х годов отмечается их широкое внедрение для решения задач невоенного характера.
1.1849 год–начало ХХ века — попытки и экспериментальные опыты по созданию БПЛА, формирование теоретических основ аэродинамики, теории полета и расчета самолета в работах ученых.
2.Начало ХХ века — 1945 год — разработка БПЛА военного назначения (самолетов-снарядов с небольшой дальностью и продолжительностью полета).
3.1945–1960 годы — период расширения классификации БПЛА по назначению и создание их преимущественно для разведывательных операций.
4.1960 годы — наши дни — расширение классификации и усовершенствование БПЛА, начало массового использования для решения задач невоенного характера.
КЛАССИФИКАЦИЯ БПЛА
Общеизвестно, что аэрофотосъемка, как вид дистанционного зондирования Земли (ДЗЗ), — это наиболее производительный метод сбора пространственной информации, основа для создания топографических планов и карт, создания трехмерных моделей рельефа и местности. Аэрофотосъемка выполняется как с пилотируемых летательных аппаратов — самолетов, дирижаблей мотодельтапланов и аэростатов, так и с беспилотных летательных аппаратов (БПЛА).
Беспилотные летательные аппараты, как и пилотируемые, бывают самолетного, а также вертолетного типа (вертолеты и мультикоптеры — летательные аппараты с четырьмя и более роторами с несущими винтами). В настоящее время в России не существует общепринятой классификации БПЛА самолетного типа. Missiles.
Микро- и мини-БПЛА ближнего радиуса действия. Класс миниатюрных сверхлегких и легких аппаратов и комплексов на их основе с взлетной массой до 5 килограммов начал появляться в России относительно недавно, но уже довольно широко представлен. Такие БПЛА предназначены для индивидуального оперативного использования на коротких дальностях на удалении до 25–40 километров. Они просты в эксплуатации и транспортировке, вы полняются складными и позиционируются как «носимые», запуск осуществляется, с помощью катапульты или с руки. Сюда относятся: Geoscan 101, Geoscan 201, 101ZALA 421-11, ZALA 421-08, ZALA 421-12, Т23 «Элерон», Т25, «Элерон-3», «Гамаюн-3», «Иркут-2М», «Истра-10», «БРАТ», «Локон», «Инспектор 101», «Инспектор 201», «Инспектор 301» и др.
Легкие БПЛА малого радиусадействия. К этому классу относятся несколько более крупные аппараты — взлетной массой от 5 до 50 килограммов. Дальность их действия — в пределах 10–120 километров.
Среди них: Geoscan 300, «ГрАНТ», ZALA 421-04, Орлан-10, ПтероСМ, ПтероЕ5, Т10, «Элерон-10», «Гамаюн-10», «Иркут-10»,
Т92 «Лотос», Т90 (Т90-11), Т21, Т24, «Типчак» БПЛА-05, БПЛА-07, БПЛА-08.
Легкие БПЛА среднего радиуса действия. Ряд отечественных образцов можно отнести к этому классу БПЛА. Их масса варьируется в пределах 50–100 килограммов. К ним относится: Т92М «Чибис», ZALA 421-09,
«Дозор-2», «Дозор-4», «Пчела-1Т».
Средние БПЛА. Взлетная масса средних БПЛА лежит в диапазоне от 100 до 300 килограммов. Они предназначены для применения на дальностях 150–1000 километров. В этом классе: М850 «Астра», «Бином», Ла-225 «Комар», Т04, Е22М «Берта», «Беркут», «Иркут-200».
Среднетяжелые БПЛА. Этот класс имеют схожую с БПЛА предыдущего класса дальность применения, но обладают несколько большей взлетной массой — от 300 до 500 килограммов.
К этому классу следует отнести: «Колибри», «Данэм», «Дань-Барук», «Аист» («Юлия»), «Дозор-3».
Тяжелые БПЛА среднего радиуса действия. Данный класс включает БПЛА полетной массой от 500 и более килограммов, предназначены для применения на средних дальностях 70–300 километров. В классе тяжлых следующие: Ту-243 «Рейс-Д», Ту-300, «Иркут-850», «Нарт» (А-03).
Тяжелые БПЛА большой продолжительности полета. Достаточно востребованная за рубежом категория беспилотных аппаратов, к которой относятся американские БПЛА Predator, Reaper, GlobalHawk, израильские Heron, Heron TP. В России образцы практически отсутствуют: «Зонд-3M», «Зонд-2», «Зонд-1», беспилотные авиационные системы Сухого («БасС»), в рамках которой создается роботизированный авиационный комплекс (РАК).
Беспилотные боевые самолеты (ББС). В настоящее время в мире активно ведутся работы по созданию перспективных БПЛА, имеющих возможность нести на борту оружие и предназначенных для ударов по наземным и надводным стационарным и подвижным целям в условиях сильного противодействия сил ПВО противника. Они характеризуются дальностью действия около 1500 километров и массой от 1500 килограммов.
На практике для аэрофотосъемки, как правило, применяются БПЛА весом до 10–15 килограммов (микро-, мини-БПЛА и легкие БПЛА). Это связано с тем, что при увеличении взлетного веса БПЛА растет сложность его разработки и, cоответственно, стоимость, но снижается надежность и безопасность эксплуатации. Дело в том, что при посадке БПЛА выделяется энергия E = mv2 / 2, а чем больше масса аппарата m, тем больше его посадочная скорость v, то есть выделяемая при посадке энергия очень быстро растет с ростом массы. А эта энергия может повредить как сам БПЛА, так и находящееся на земле имущество.
Беспилотный вертолет и мультикоптер лишены этого недостатка. Теоретически, такой аппарат можно посадить со сколь угодно малой скоростью сближения с Землей. Однако беспилотные вертолеты слишком дороги, а коптеры пока не способны летать на большие расстояния, и применяются только для съемки локальных объектов (отдельных зданий и сооружений).
ПРЕИМУЩЕСТВА БПЛА
Превосходством БПЛА перед пилотируемыми воздушными судами является, прежде всего, стоимость производства работ, а также значительное уменьшение количества регламентных операций. Само отсутствие человека на борту самолета значительно упрощает подготовительные мероприятия для проведения аэрофотосъемочных
Во-первых, не нужен аэродром, даже самый примитивный. Беспилотные летательные аппараты запускаются или с руки, или с помощью специального взлетного устройства — катапульты.
Во-вторых, особенно при использовании электрической двигательной схемы, отсутствует необходимость в квалифицированной технической помощи для обслуживания летательного аппарата, не так сложны мероприятия по обеспечению безопасности на объекте работ.
В-третьих, отсутствует или намного увеличен межрегламентный период эксплуатации БПЛА по сравнению с пилотируемым воздушным судном.
Данное обстоятельство имеет большое значение при эксплуатации аэрофотосъемочного комплекса в удаленных районах нашей страны. Как правило, полевой сезон аэрофотосъемочных работ короток, каждый погожий день необходимо использовать для производства съемки.
УСТРОЙСТВО БПЛА
Две основные схемы компоновки БПЛА: классическая (по схеме «фюзеляж+крылья+хвост»), к которой относится, например БПЛА «Орлан-10», Mavinci SIRIUS (рис. 1) и др., и «летающее крыло», к которой относятся Geoscan101 (рис. 2), Gatewing X100, Trimble UX5 и др.
Основными частями беспилотного аэрофотосъемочного комплекса являются: корпус, двигатель, бортовая система управления (автопилот), наземная система управления (НСУ) и аэрофотосъемочное оборудование.
Корпус БПЛА изготавливают излегкого пластика (например, углепластика или кевлара), чтобы защитить дорогостоящую фотоаппаратуру и средства управления и навигации, а его крылья — из пластика или экструдированного пенополистирола (EPP). Этот материал легок, достаточно прочен и не ломается при ударе. Деформированную деталь из ЕРР зачастую можно восстановить подручными средствами.
Легкий БПЛА с посадкой на парашюте может выдержать несколько сотен полетов без ремонта, который, как правило, включает замену крыльев, элементов фюзеляжа и др. Производители стараются удешевить части корпуса, подверженные износу, чтобы расходы пользователя на поддержа-БПЛА в рабочем состоянии были минимальными.
Надо отметить, что наиболее дорогостоящие элементы аэрофотосъемочного комплекса, наземная система управления, авионика, программное обеспечение, — вообще не подвержены износу.
Силовая установка БПЛА можетбыть бензиновой или электрической. Причем, бензиновый двигатель обеспечит намного более продолжительный полет, так как в бензине, в расчете на килограмм, запасено в 10–15 раз больше энергии, чем мож-но сохранить в самом лучшем аккумуляторе. Однако такая силовая установка сложна, менее надежна и требует значительного времени для подготовки БПЛА к старту. Кроме того, беспилотный летательный аппарат с бензиновым двигателем крайне сложно перевозить к месту работ на самолете. Наконец, он требует от оператора высокой квалификации. Поэтому бензиновый БПЛА имеет смысл применять только в тех случаях, когда необходима очень большая продолжительность полета — для непрерывного мониторинга, для обследования особо удаленных объектов.
Электрическая двигательная установка, напротив, очень нетребовательна к уровню квалификации обслу-живающего персонала. Современные аккумуляторные батареи могут обеспечить длительность непрерывного полета свыше четырех часов. Обслуживание электрического двигателя совсем несложно. Преимущественно это только защита от влаги и грязи, а также проверка напряжения бортовой сети, что осуществляется с наземной системы управления. Зарядка аккумуляторов производится от бортовой сети сопровождающего автомобиля или от автономного электрогенератора. Бесколлекторный электрический двигатель БПЛА практически не изнашивается.
Автопилот —с инерциальной системой (рис. 3) — наиболее важный элемент управления БПЛА.
Автопилот весит всего 20–30 граммов. Но это очень сложное изделие. В автопилоте, кроме мощного процессора, установлено множество датчиков — трехосевые гироскоп и акселерометр (а иногда и магнитометр), ГЛО-НАСС/GPS-приемник, датчик давления, датчик воздушной скорости. С этими приборами беспилотный летательный аппарат сможет летать строго по заданному курсу.
В БПЛА имеется радиомодем, необходимый для загрузки полетного задания, передачи в наземную систему управления телеметрических данных о полете и текущем местоположении на участке работ.
Наземная система управления
(НСУ) —это планшетный компьютерили ноутбук, оснащенный модемом для связи с БПЛА. Важная часть НСУ — программное обеспечение для планирования полетного задания и отображения хода его выполнения.
Как правило, полетное задание составляется автоматически, по заданному контуру площадного объекта или узловым точкам линейного объекта. Кроме того, существует возможность проектирования полетных маршрутов, исходя из необходимой высоты полета и требуемого разрешения фотоснимков на местности. Для автоматического выдерживания заданной высоты полета есть возможность учесть в полетном задании цифровую модель местности в распространенных форматах.
Во время полета на картографической подложке монитора НСУ отображается положение БПЛА и контуры снимаемых фотографий. Оператор имеет возможность во время выполнения полета оперативно перенацелить БПЛА на другой район посадки и даже оперативно посадить беспилотник с «красной» кнопки наземной системы управления. По команде с НСУ могут быть запланированы и другие вспомогательные операции, например — выброс парашюта.
Кроме обеспечения навигации и обеспечения полета автопилот должен управлять фотоаппаратом, чтобы получать снимки с заданным межкадровым интервалом (как только БПЛА пролетит нужное расстояние от предыдущего центра фотографирования). Если заранее рассчитанный межкадровый интервал не выдерживается стабильно, приходится настраивать время срабатывания затвора с таким расчетом, чтобы даже при попутном ветре продольное перекрытие было достаточным.
Автопилот должен регистрировать координаты центров фотографирования геодезического спутникового приемника ГЛОНАСС/GPS, чтобы программа автоматической обработки снимков смогла построить модель быстро и привязать ее к местности. Требуемая точность определения координат центров фотографирования зависит от технического задания к выполнению аэрофотосъемочных работ.
Аэрофотосъемочное оборудование на БПЛА устанавливается в зависимости от его класса и цели использования.
На микро- и мини-БПЛА устанавливаются компактные цифровые фотокамеры, комплектуемые сменными объективами с постоянным фокусным расстоянием (без трансфокатора или zoom-устройства) весом 300–500 граммов. В качестве таких камер в настоящее время используются фотоаппараты SONY NEX-7
с матрицей 24,3 МП, CANON600D матрицей 18,5 МП и подобные им. Управление срабатыванием затвора и передача сигнала от затвора в спутниковый приемник производится с помощью штатных или незначительно доработанных электрических разъемов фотоаппарата.
На легкие БПЛА малого радиуса действия устанавливаются зеркальные фотокамеры с большим размером светочувствительного элемента, например CanonEOS5D(размер сенсора 36×24 мм) , NikonD800 (матрица 36,8 МП (размер сенсора 35,9×24 мм)), Pentax645D(CCD-сенсор 44×33 мм, матрица 40 МП) и им подобные, весом 1,0–1,5 килограмма.
Рис. 4. Схема размещения аэроснимков (голубые прямоугольники с подписями номеров)
ВОЗМОЖНОСТИ БПЛА
Согласно требованиям документа «Основные положения по аэрофотосъемке, выполняемой для создания и обновления топографических карт и планов» ГКИНП-09-32-80 носитель аэрофотосъемочной аппаратуры должен предельно точно следовать проектному положению маршрутов аэрофотосъемки, выдерживать заданный эшелон (высоту фотографирования), обеспечивать требования по соблюдению предельных отклонений по углам ориентирования фотокамеры — наклон, крен, тангаж. Кроме того, навигационная аппаратура должна обеспечивать точное время срабатывания фотозатвора и определять координаты центров фотографирования.
Выше указывалась аппаратура, интегрированная в автопилот: это микробарометр, датчик воздушной скорости, инерциальная система, навигационная спутниковая аппаратура. По проведен-ным испытаниям (в частности, БПЛА Geoscan101) были установлены следующие отклонения реальных параметров съемки от заданных:
• уклонения БПЛА от оси маршрута — в диапазоне 5–10 метров;
• уклонения высот фотографирования — в диапазоне 5–10 метров;
• колебание высот фотографирования смежных снимков — не более 2 метров.
Возникающие в полете «елочки» (развороты снимков в горизонтальной плоскости) обрабатываются автоматизированной системой фотограмметрической обработки без заметных негативных последствий.
Фотоаппаратура, устанавливаемая на БПЛА, позволяет получить цифровые изображения местности с разрешением лучше 3 сантиметров на один пиксель. Применение коротко-, средне-, и длиннофокусных фотообъективов определяется ха-рактером получаемых готовых мате-риалов: будь это модель рельефа или ортофотоплан. Все расчеты производятся так же, как и в «большой» аэрофотосъемке.
Применение двухчастотной ГЛО-НАСС/GPSспутниковой геодезической системы для определения координат центров снимков позволяет в процессе постобработки получить координаты центров фотографирования с точностью лучше 5 сантиметров, а применение метода PPP(PrecisePointPositioning) — позволяет определять координаты центров снимков без использования базовых станций или на значительном удалении от них.
Конечная обработка материалов аэрофотосъемки может служить объективным критерием оценки качества выполненной работы. Для иллюстрации можно рассмотреть данные об оценке точности фотограмметрической обработки материалов аэрофотосъемки с БПЛА, выполненной в ПО «PhotoScan» (производства фирмы Agisoſt, г. СанктПетербург) по контрольным точкам (табл. 2).
ПРИМЕНЕНИЕ БПЛА
В мире, а в последнее время и в России, беспилотные летательные аппараты применяются в геодезических изысканиях при строительстве, для составления кадастровых планов промышленных объектов, транспортной инфраструктуры, поселков, дачных массивов, в маркшейдерском деле для определения объемов горных выработок и отвалов, при учете движения сыпучих грузов в карьерах, портах, горнообогатительных комбинатах, для создания карт, планов и 3D-моделей городов и предприятий.
Беспилотники применяются при мониторинге линий электропередач
(определение зарастания, провисания проводов, деформации опор, повреждений изоляторов и проводов), трубопроводов (выявление врезок, незаконных построек, зарастания), дорог (выявление деформации насыпи, дефектов полотна), для мониторинга госграницы, особо охраняемых объектов, зон аэропортов (выявление изменений, выявление незаконных построек), акваторий портов и др.
Эти аппараты также применяются для обнаружения лесных пожаров, при ликвидации чрезвычайных ситуаций, отслеживании нарушителей ПДД, для проводки судов во льдах. Используют их и в потребительском секторе — для съемки спортивных соревнований, рекламных роликов, съемки для создания карт и 3D-моделей личных владений.
Литература
1. Павлушенко М., Евстафьев Г., Макаренко И. БПЛА: история, применение, угроза распространения и перспективы развития. М., «Права человека», 2005.
2. Цепляева Т.П., Морозова О.В. Этапы развития беспилотных летательных аппаратов. М., «Открытые информационные и компьютерные интегрированные технологии», № 42, 2009.
3. Сайт www.Missiles.ru.
4. Сайт www.mavinci.de.
5. Сайт www.geoscan.aero.
6. Сайт www.micropilot.com.
Сферы применения БПЛА
Изначально беспилотники использовались исключительно в военной сфере. Они представляли собой «летающие бомбы».
Разрывные снаряды (первые были неуправляемыми, более современные – радиоуправляемыми) двигались в сторону противника, приземлялись и взрывались.
Позднее установки стали оснащаться приборами слежения и осуществлять разведку. При обнаружении такого приспособления врагом армия не несла людских потерь, что обусловило широкое распространение беспилотников в военной отрасли.
Современные гражданские БПЛА выполняют следующие задачи:
Несмотря на широкое применение аппаратов во многих сферах, производство БПЛА для военной отрасли до сих пор занимает первое место по количеству выпускаемых изделий.
Батарея
Поскольку многие современные дроны летают при помощи бесколлекторных двигателей, то есть на электрической тяге, то аккумуляторная батарея является одной из основных частей дрона. Без нее невозможно запустить дрон и выполнить все поставленные полетные задачи. Впрочем, если вы управляете дроном с пульта (джойстика), то нужно помнить, что он тоже работает от своей батареи. Батарея на борту дрона чаще всего называется полетной (бортовой) и может иметь разные параметры (тип, емкость, мощность, наличие или отсутствие интеллектуальных функций и т.п.).
Батарея с функцией самоподогрева для работы при температурах ниже 0 для дронов серии DJI Mavic 2
Понятно, что у разных моделей беспилотников разные требования не только к силовой установке, но и к батарее, как к источнику питания. Небольшие и любительские дроны оснащаются батареями небольших размеров с небольшой емкостью и мощностью, что в конечном итоге влияет на полетное время и рассчитанную полезную нагрузку. Для сравнения:
Специализированные (промышленные дроны и платформы) требуют более емкой и мощной батареи ввиду сложности и большого объема решаемых задач. Отсюда и иные параметры источников питания, а также вытекающие отсюда полетное время и вес полезной нагрузки. Для сравнения:
Компания DJI, как и ее конкуренты, постоянно ведет исследования в области совершенствования полетных аккумуляторов. Например, мониторинг состояния батареи сегодня стал уже довольно обычным явлением. Теперь пилот вовремя узнает не только об уровне заряда батареи, но и сможет получить информацию о том, когда следует вернуть беспилотник на базу, чтобы он не потерпел аварию из-за полного разряда батареи. Кроме того, DJI стала выпускать специальные аккумуляторы с подогревом, позволяющие эксплуатировать ее дроны при низких температурах, что ранее было просто невозможно.
Стандартные пропеллеры
Стандартные пропеллеры отвечают за направление движения дрона и располагаются в передней части летательного аппарата. Хотя с момента появления беспилотников для изготовления пропеллеров использовались самые разные материалы, сегодня большинство серийных машин получают пропеллеры либо из пластика, либо из композитных материалов (углеволокна).
Инженеры до сих пор работают над наиболее эффективной формой пропеллеров, чтобы обеспечить стабильность полета, хорошее маневрирование и устойчивость летательного аппарата к воздействию ветра или других погодных условий. Пилоту необходимо перед каждым полетом в обязательном порядке проверять состояние пропеллеров, так как малейшее повреждение может вызвать аварию или нестабильный полет. Вот почему рекомендуется всегда иметь с собой во время полетов запасные пропеллеры.
Передатчик
Передатчик – это устройство, отвечающее за передачу радиосигналов от контроллера к дрону для выдачи команд о направлении полета и других связанных с этим параметров. Как и приемник, передатчик должен иметь не менее четырех каналов для работы с беспилотником, но обычно также рекомендуется 5. Так же, как и в ситуации с ресиверами, на рынке сегодня представлено много модификаций приемников от различных производителей. Этот факт будет, скорее всего, интересен тем, кто хотел бы собрать собственный дрон, так как в случае замены устройства на моделях от DJI, используется фирменная продукция и продукция тех брендов, которые имеют партнерские отношения с китайским производителем. Приемник и передатчик должны использовать один радиосигнал для связи с дроном во время полета. Каждый радиосигнал имеет стандартный код, который помогает отличать в эфире свой сигнал от чужих.
Последняя модель передатчика DJI Lightbridge 2
В последние годы появилось большое количество публикаций по использованию для решения топографических задач беспилотных летательных аппаратов (БПЛА), или беспилотных авиационных систем (БАС). Такой интерес в немалой степени вызван простотой их эксплуатации, экономичностью, относительно невысокой стоимостью, оперативностью и т.д. Перечисленные качества и наличие эффективных программных средств автоматической обработки материалов аэрофотосъемки (включая выбор необходимых точек) открывают возможности широкого использования программно-технических средств беспилотной авиации в практике инженерно-геодезических изысканий.
В этом номере обзором технических средств беспилотной авиации мы открываем серию публикаций о возможностях БПЛА и опыте их использования при полевых и камеральных работах.
Д.П. ИНОЗЕМЦЕВ,руководитель проекта ООО«ПЛАЗ»,г. Санкт-Петербург
БПЛА – это летающие установки, которые выполняют возложенные на них функции без экипажа на борту. Управление аппаратами осуществляется с земли либо траектория полета заранее закладывается в бортовой компьютер.
Основными частями беспилотника являются фюзеляж (корпус), двигатель, аккумулятор, системы управления (в том числе бортовой компьютер), съемочная аппаратура и другие, необходимые для выполнения задач, приборы.
Бесколлекторные двигатели
Все производимые в последнее время дроны используют бесколлекторные двигатели, которые считаются более эффективными с точки зрения производительности и эксплуатации по сравнению с коллекторными двигателями. В любом типе техники конструкция мотора не менее важна, чем все остальные компоненты, ведь эффективный двигатель не только обеспечивает отличное пилотирование (в случае с беспилотником), то сокращает ваши расходы на обслуживание и покупку дополнительного оборудования. Чем мощнее двигатель, тем больше длится время автономной работы дрона и дольше его полет. Мощность двигателя также влияет на параметры полезной нагрузки, которую может нести дрон: камера и другое оборудование.
Различия между коллекторным и бесколлекторным двигателем
Отличным примером является разработка компанией DJI серии своих дронов промышленного назначения: Inspire 1, Inspire 2, серии дронов Matrice и Agras. Конечно, у DJI в этом плане тоже есть конкуренты, стремящиеся выпускать летательные аппараты с мощными двигателями, однако пока китайская компания идет на шаг впереди, создавая не только мощные, но и экономичные, а также малошумные агрегаты.
Камера
В этом отношении наблюдается некоторое разнообразие. Если первые дроны поставлялись без камер и в лучшем случае имели некоторые аксессуары для крепления обычных камер, используемых на земле, то теперь ситуация изменилась. Часть дронов поставляется во встроенной камерой (яркий пример: серия Mavic, Spark, Ryze Tello). В других случая беспилотник может быть оборудован подвесной камерой, которую можно снимать (и даже устанавливать другие совместимые) или же вы можете купить коптер без камеры, к которому можно позже докупить штатную подвесную камеру. Преимущества аппаратов с камерами очевидны, ведь тогда они превращаются в “летающие камеры”, с помощью которых можно вести как любительскую, так и профессиональную съемку с воздуха.
https://youtube.com/watch?v=WHU6C6ADI7s%3Ffeature%3Doembed
Фильм “Riders”, снятый с помощью квадрокоптера DJI Inspire 2 и подвеса с камерой DJI Zenmuse X7, – один из ярких примеров динамичной воздушной съемки
Виды
По конструкции воздушные беспилотники могут быть следующих видов
. Их конструкция создается с учетом наличия многочисленных препятствий и объектов, которые могут оказаться под колесами. Также здесь необходимо учитывать тип грунта. В данном случае большой перспективой обладают военные разработки.
На ровных покрытиях ситуация обстоит несколько по-другому. В этом направлении работает множество компаний, развивающих гражданский автомобильный сектор. Ограничивают внедрение подобных устройств действующие законы. Но сегодня уже имеются определенные подвижки, которые позволят в ближайшие годы внедрить эти автомобили.
Водные беспилотники. Это танкеры, подлодки, робо-рыбки и так далее. Изобретатели постоянно совершенствуют устройства, создавая роботехнические водомерки, медузы, рыбки.
Космические беспилотники. Их особенность в том, что это невероятно сложные и точные устройства, которые не терпят ошибок. На их производство выделяются огромные деньги, но в основном создаются единичные экземпляры.
Основой летающего аппарата является рама. Именно на нее устанавливаются все элементы. В большинстве случаев ее делают из полимеров и разных сплавов металлов. Полетный контроллер управляет дроном. На него приходят сигналы от пульта управления. В контроллер входят процессор, барометр, который, определяет высоту, акселерометр, гироскоп, GPS-навигатор, оперативное запоминающее устройство, устройство приема сигнала.
Двигатели, регуляторы и пропеллеры отвечают за полет беспилотника. При помощи регулятора задается скорость летающего аппарата. Аккумулятор является источником энергии для двигателя, а также других элементов дрона. Коммерческие и потребительские беспилотники управляются при помощи пульта управления. Военные агрегаты управляются как с помощью пульта, так и спутниковых систем.
Устройство наземных беспилотников несколько отличается от летающих. Большая часть разработчиков применяет уже существующие транспортные средства, в которые встраивает средства управления, камеры, сенсоры и датчики. По степени автоматизации это могут быть полностью автономные устройства или агрегаты, которые управляются частично или полностью человеком, но на расстоянии. Военные наземные беспилотники могут быть миниатюрными в виде червей и змей и огромными в виде танков, разминирующих, десантных и пехотных машин.
Устройство гражданских машин выполнена с учетом следующих элементов
Коммерческие и потребительские беспилотные устройства в большей части случаев управляются при помощи пульта управления. Однако могут быть и полностью автоматические аппараты. Пульт дистанционного управления отправляет сигналы в контроллер.
Контроллер производит обработку полученных сигналов, и далее отправляет команды на различные элементы беспилотника. К примеру, сигнал об увеличении скорости заставляет пропеллер крутиться быстрее, что приводит к повышению скорости и перемещения беспилотника.
В полностью автоматизированных наземных аппаратах отсутствуют типичные органы управления, свойственные стандартным автомобилям. Здесь нет педалей, рулевого колеса. Пассажиру необходимо только активировать, то есть указать пункт назначения, куда ему нужно ехать, или деактивировать систему.
Беспилотные автомобили обычно имеют разнообразные датчики и сенсоры, которые помогают им ориентироваться в пространстве. Основой их, к примеру, может быть 64-лучевой светодальномер, который устанавливается на крыше машины. При помощи этого прибора генерируется детальная карта пространства, которая находится вокруг машины. Далее автомобиль комбинирует полученные сведения с высокоточными картами и обрабатывает их.
В результате он может передвигаться, избегая любых возникающих препятствий. Также на автомобиле находятся и другие сенсоры и приборы, в том числе радары на бамперах, камеры переднего и заднего вида, инерциальные измерители, колесные датчики, позволяющие определять положение и отслеживать движение автомобиля.
Военные создают и более миниатюрные устройства в виде насекомых, червей и змей. Они смогут незаметно использоваться для разведки и даже для уничтожения целей. К примеру, дрон в виде осы может напасть на врага, кольнув его жалом и выпустив смертельный яд.
Похожие темы
Наличие шасси у беспилотника не всегда обязательно. Некоторые небольшие модели сконструированы таким образом, чтобы можно было без проблем приземлиться на нижнюю панель или что-то вроде нее. Другие модели, и их большинство, оснащаются различными вариантами шасси. У кого-то они напоминают вертолетные лыжи, у других замысловатые “ножки”. Все зависит от конкретной модели, ее назначения и оснащения. Например, беспилотники, использующиеся для воздушной съемки, а значит, оборудованные подвесной камерой, как правило, получают высокое шасси с большим клиренсом. Такими шасси изначально оборудуются все модели DJI Phantom с первой до последней версии. Высокие шасси есть и у промышленных дронов линейки Matrice, также разрабатываемой DJI.
А вот у дронов серии Inspire и Mavic шасси представляют собой что-то вроде ножек, установленных под двигателями на концах “рук” рамы. При этом из-за низко расположенной камеры шасси Inspire при посадке опускаются ниже, а в полете немного поднимаются вверх, улучшая при этом обзор для камеры. У Mavic из-за особенностей расположения камеры такое решение не требуется, но зато у него шасси складываются вместе с “руками” и пропеллерами, превращая дроны этой серии в одни из самых компактных и удобных для перевозки.
Квадрокоптер DJI Inspire 1 с поднимающимися в полете “лучами” и шасси
Назначение дрона и возможность подвесить дополнительную полезную нагрузку под нижней панелью (например, камеру или груз), влияют на технические решения для шасси. В одних случаях они делаются фиксированными (как у той же серии Phantom), а в других случаях шасси могут убираться, предоставляя камере обзор на 360 градусов, что важно для специализированных беспилотников (для инспекции, пожаротушения, поиска и спасения и т.п.).